

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations Nov/Dec 2019 FLUID MECHANICS & HYDRAULIC MACHINERY

(ME & AGE)

Time: 3 hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I

- 1 **a** State Pascal's law. What do you understand the terms Absolute, Gauge, atmospheric & **6M** vacuum pressure?
 - **b** A hydraulic pipe has a ram of 30 cm diameter and a plunger of 4.5 cm diameter. Find **6M** the weight lifted by the hydraulic press when the force applied at the plunger is 500N?

OR

- 2 **a** Derive the condition for capillary rise and capillary fall with neat sketch.
 - **b** A rectangular plane surface 3 m wide and 4 m deep lies in water in such a way that its **6M** plane makes an angle of 30° with the free surface of water. Determine the total pressure force and position of centre of pressure, when the upper edge is 2 m below the free surface.

UNIT-II

- **a** The velocity potential function is given by $\emptyset = 5(x^2 y^2)$. Calculate the velocity 3 **6M** components at the point (4, 5).
 - **b** A 30 cm diameter pipe, conveying water, branches into two pipes of diameters 20 cm **6M** and 15 cm respectively. If the average velocity in the 30 cm diameter pipe is 2.5 m/s. Find the discharge in the pipe. Also determine the velocity in 15 cm pipe if the average velocity in 20 cm diameter pipe is 2 m/s.

OR

- a State Bernoulli's theorem for steady flow of an incompressible fluid. Derive the 4 **6M** expression for Bernoulli's theorem from first principle and state the assumption made for such a derivation.
 - **b** Water is flowing through a pipe has diameter 300 mm and 200 mm at the bottom and **6M** upper end respectively. The intensity of pressure at the bottom end is 24.525 N/cm² and the pressure at the upper end is 9.81 N/cm2. Determine the difference in datum head if the rate of flow through pipe is 40 lit/s.

UNIT-III

- **a** Derive the expression for flow through pipes in series. 5
 - **b** A horizontal venture meter with 30cm diameter inlet and 10cm throat is used for **6M** measuring the flow of water through a pipeline. If pressure in pipe is 1.5kpa and the vacuum pressure at the throat is 40cm of mercury, calculate the rate of flow. It may be presumed that 5% of differential head is lost between the pipe main and the throat section. Also make calculations for the discharge co-efficient take specific weight of water = 10kN/m_3 .

OR

- **a** Explain pitot tube and pitot static tube. 6
 - **b** An orifice meter with orifice diameter 10cm is inserted in a pipe of 20cm diameter. The **6M** pressure gauges fitted up stream and down stream of 19.62N/cm2 and 9.81N/cm2 respectively co-efficient of discharge for the meter is given as 0.6. Find the discharge of water through pipe.

6M

6M

6M

UNIT-IV

7 a Describe briefly Buckingham's pi- theorem

manometric efficiency is 95%.

6M b The time period (t) of a pendulum depends upon the length (l) of the pendulum and **6M** acceleration due to gravity (g) .derive expression for time period.

OR

- a A pipe of diameter 1.5 m is required to transport an oil of sp.gr 0.90 and viscosity 8 **6M** 3×10^{-2} poise at the rate of 3000 liters /s. Tests were conducted on a 15 cm diameter pipe using water at 20° C . Find the velocity and the rate of flow in the model .Viscosity of water at 20° C is equal to 0.01 poise.
 - **b** In a model test of a spill way the discharge and velocity of flow over the model were 2 **6M** m₃/s and 1.5 m/s respectively. Calculate the velocity and discharge over the prototype which is 36 times the model size.

UNIT-V

9	a What is pelton turbine and discuss the parts of pelton turbine	6M
	b Write a note on work done by the centrifugal pump (impeller) on water.	6M
	OR	
10	A centrifugal pump delivers water against a net head of 14.5m and a design speed of 1000	12M
	r.p.m. The vanes of curved back to an angle of 30° with the periphery. The impeller	

*** END ***

diameter is 300mm and outlet width is 50mm .Determine the discharge of the pump if